Что такое металлический водород. Водородная энергетика и черная металлургия Металлический водород что он из себя представляет

Недавно двум ученым, Михаилу Еремцу и Ивану Трояну, в результате лабораторных экспериментов удалось то, чего не могли осуществить многие физики и химики — получить металлический водород. Как известно, этот элемент в подобном состоянии может проявлять свойства сверхпроводника при комнатной температуре. Поэтому открытие стало настоящей сенсацией.

Я думаю, многие из нас еще тогда, когда учились в школе, то часто задавались вопросом — почему всем известный и нежно любимый нами водород находится в таблице Менделеева в двух группах — в I и в VII. И, наверное, те, кто задавал этот вопрос учителю химии, узнали от него, что это происходит потому, что поскольку электронный уровень 1s вмещает не более двух электронов, то атому водорода (у которого он один) в общем-то все равно — для того, чтобы достичь устойчивой электронной конфигурации, можно и приобретать чужой, и терять свой электрон.

Именно поэтому он может отдать электрон, как поступают металлы (при образовании галогеноводородов), а также перетянуть к себе чужой, как это делают неметаллы (при образовании гидридов металлов). Причем, как показывает опыт, охотнее водород все-таки отдает, нежели отбирает. Исходя из этого, логично предположить, что "в душе" он все-таки металл.

Однако не все так просто, особенно когда речь заходит о физических свойствах этого элемента. В норме, как мы помним, водород — это газ, а таковое для металлов не характерно, они в нормальных условиях чаще всего твердые вещества (и лишь иногда — жидкости). Кроме того, водород в чистом виде ведет себя как диэлектрик, а металлы в норме — проводники. Исходя из этого, большинство химиков и физиков склонны воспринимать этот газ как неметалл.

Тем не менее, некоторые ученые считают, что в особых условиях от водорода можно добиться, чтобы он вел себя так, как положено металлу. Еще в 1935 году американские исследователи Юджин Вигнер и Хиллард Хантингтон предположили, что молекулярный водород в условиях высокого давления (что-то в районе 250 000 атмосфер) должен приобретать металлические свойства. При этом, согласно расчетам, металлический водород может переходить в сверхпроводящее состояние при температуре в 200-400 К (а это от -73 до + 127 градусов Цельсия, то есть в данный диапазон попадает и комнатная температура!).

Ученые также выяснили, что металлический водород может оказаться метастабильным, то есть после снятия давления не будет сразу возвращаться в привычное состояние газа с диэлектрическими свойствами, а какое-то время побудет сверхпроводником.

Как видите, если бы людям удалось каким-то образом добыть металлический водород, то проблема создания электрических сверхпроводников, работающих при нормальных для человечества температурах, была бы решена раз и навсегда. Но вот беда — в природе таковой практически отсутствует. Правда, считается, что он может быть в достаточных количествах в верхних слоях "коры" Юпитера, где, как известно, давление весьма высоко, но ведь оттуда его не достанешь. Мы и к соседнему Марсу слетать-то никак не соберемся, чего уж про Юпитер говорить…

Именно поэтому ученые уже достаточно долгое время пытаются получить металлический водород в лабораторных условиях. Однако вопрос о том, наблюдалась ли в данных экспериментах искомая "металлизация", остается спорным — исследователи не могли представить убедительных доказательств. Более того, ряд опытов даже свидетельствовал об обратном — в недавних экспериментах, проведенных при температуре ниже 100К, было показано, что водород сохраняет молекулярное диэлектрическое состояние даже под давлением в 300 Гпа. То есть даже в таких адских условиях упрямый элемент никак не хотел становиться металлом.

Тем не менее, на днях весь научный мир потрясло известие о том, что два ученых из Химического института Макса Планка в Майнце, Михаил Еремец и Иван Троян смогли в лабораторных условиях получить долгожданный металлический водород. Как следует из статьи экспериментаторов (с ней можно ознакомиться ), они использовали так называемую алмазную наковальню — установку из двух кристаллов алмаза, между остриями которых была помещена изолирующая прокладка.

В ее отверстие был помещен образец (газ в сжимаемой емкости) диаметром в ~10 и толщиной в ~2 мкм. Чтобы регистрировать сопротивление, к нему подвели тонкие (около 50 нм в диаметрое) электроды. После чего ученые стали постепенно увеличивали давление и отслеживали изменения свойств водорода. К слову сказать, все это происходило при комнатной температуре (то есть при 295 К или 22 градусах Цельсия).

По словам экспериментаторов, когда давление достигло отметки 178 ГПа, водород и изолирующая прокладка оставались прозрачными. Однако позже, при 200 ГПа образец начал темнеть, то есть стал непрозрачным (первое свидетельство его превращения в металл). При дальнейшем повышении давления, на отметке в 234 ГПа образец стал совсем непрозрачным, а при 250 ГПа и того больше — начал отражать свет (то есть заблестел, подобно большинству металлов).

Также было установлено, что давление в 220 Гпа привело к тому, что в образце появилась электропроводность, а повышение давления до 260-270 ГПа вызвало резкий рост проводимости, которая стабилизировалась на новом уровне и практически не менялась, если давление поднимали до 300 ГПа. Подобное изменение характеристик вещества физики и считают признаком перехода в металлическое состояние.

Интересно, что подобное предположение подтвердилось и во время контрольного лазерного облучения: при давлении до 260 ГПа воздействие гелий-неонового лазера на образец приводило к снижению сопротивления, а после — давало противоположный эффект (что обычно и происходит в таких условиях с металлами).

Чтобы окончательно удостовериться в том, что им удалось получить именно металлический водород, а не что-то иное, Еремец и Троян охладили образец до 30 градусов Кельвина. И хотя сопротивление немного поднялось, тем не менее электропроводность образец не потерял. так и остался проводящим. Обратное же превращение металлической фазы в молекулярный водород началось лишь тогда, когда давление снизили до 200 ГПа.

Итак, судя по всему, немецким физикам российского происхождения, Михаилу Еремцу и Ивану Трояну впервые удалось получить металлический водород. И хотя на многих коллег это открытие произвело огромное впечатление, нашлись и скептики, усомнившиеся в корректности проведения эксперимента. Они отмечают, что при данных опытах металлические электроды и эпоксидная смола могли взаимодействовать с водородом во время сдавливания и сильно исказить результаты.

А авторитетный материаловед Артур Руофф из Корнеллского университета (США) указывает на одну странность — по его мнению, весьма подозрительным кажется то, что сопротивление металлического образца при охлаждении до 30 К увеличилось аж на 20 процентов! Он отмечает, что у типичного металла в таких условиях оно должно было либо снизиться, либо показать гораздо более существенный рост.

) В январе этого года в журнале Science была опубликована статья сотрудников Гарвардского университета Ранга Диаса (Ranga Dias) и Исаака Сильверы (Isaac Silvera), в которой сообщается о получении металлического водорода. Статья вызвала большой резонанс в средствах массовой информации, поскольку металлический водород был давней мечтой твердотельщиков. Во-первых, он очень интересен как фундаментальное физическое явление. Во-вторых, он должен образовываться в недрах планет-гигантов. В-третьих, он привлекает широкий общественный интерес благодаря предсказаниям о его возможной метастабильности и высокотемпературной сверхпроводимости. Чтобы разобраться в том, что реально произошло, мы обратились за комментариями к директору Института физики высоких давлений им. Л. Ф. Верещагина, академику РАН Вадиму Бражкину . Вопросы задавал Борис Штерн .

— Передо мной фазовая диаграмма водорода, сделанная годы назад. На ней уверенной рукой проведена условная граница между твердым молекулярным и металлическим атомарным водородом, где-то на двух мегабарах, выше при больших температурах — фаза жидкого металлического водорода. Значит ли это, что данная фазовая диаграмма хорошо считается и все фазы были известны давно?

— Нет, относительно хорошо просчитано до одного мегабара и намного выше десяти мегабар. А как раз в той области, где ожидается фазовый переход, при нескольких мегабарах, считается плохо. Предсказания много раз менялись. Совсем давно это было 200 килобар, потом предполагаемое давление металлизации выросло до мегабара, потом у кого-то получалось десять, у кого-то — три. В этой области действительно трудно считать — нет малого параметра. Проблема в том, что в данном случае размер иона практически нулевой, это протон, а плотность электронов сильно неоднородна. Это практически единственный такой дурацкий металл, который не считается. Ту т даже непонятно, будет ли вблизи перехода структура кристаллической, или это будет жидкость.

— Но сейчас на компьютерах перемалывают достаточно тяжелые задачи без всяких малых параметров. На каком уровне находятся численные модели для металлического водорода?

— Как раз они сейчас в основном и работают. Это первопринципный счет на суперкомпьютерах для нескольких сотен атомов. Сузить область предсказанной металлизации и возможного поведения кривой плавления водорода удалось, но значительный разброс предсказаний в данных различных групп тем не менее остался. Фазовая диаграмма водорода, соответствующая современным представлениям. По горизонтальной оси — давление в гигапаскалях (100 ГПа примерно равны одному мегабару). Красная линия отделяет твердый водород от жидкого. Изображение из статьи Dias R. P. et al., Science 10.1126/science.aal1579 (2017) — Да, на фазовой диаграмме, которая у меня перед глазами, выше по температуре — область жидкого металлического водорода. И она наступает даже при более низких давлениях, чем твердая металлическая фаза. Это соответствует современным представлениям?

— Да, конечно, корректно отличить диэлектрическую от металлической фазы можно только при низкой температуре, но были намеки на то, что при высокой температуре высокая проводимость наступает раньше по давлению. Это было подтверждено еще в середине 1990-х — сначала Биллом Неллисом (Bill Nellis), потом Владимиром Фортовым — в ударных волнах при давлении около полутора миллионов атмосфер водород начинает проводить примерно как металлический натрий. Правда, здесь могут быть возражения, что это происходит за счет ионизации, а не из-за перехода в металлическую фазу. Такой спор идет. Но, в принципе, в области высоких температур от 2 до 5 тыс. градусов во многих экспериментах в районе от 1 до 3 мегабар наблюдались признаки перехода в металлическую фазу — и в ударных волнах, и в статических экспериментах с лазерным нагревом. Это известный факт.

— Правильно ли я понимаю, что в ударных волнах сложно отличить металлическую проводимость от плазменной?

— Не то чтобы трудно отличить, это скорее одно и то же — при высокой температуре они перемешаны, так что тут больше вопрос терминологии. Если Неллису хотелось получить Нобелевскую премию, то он трактовал это как жидкий металлический водород. На самом деле с точки зрения планетологии важнее как раз жидкая фаза — именно она существует в недрах планет, где температура высока. Именно жидкий металлический водород в недрах Юпитера и Сатурна создает магнитное поле. Хотя с точки зрения классических твердотельщиков это какая-то скучная плазма, ионизация. С их точки зрения главное — найти переход вблизи нулевой температуры.

— Об истории. Когда появилась идея, что должен существовать металлический водород?

— Первая статья — 1935 год. Юджин Вигнер (Eugene Wigner) и Хиллард Белл Хантингтон (Hillard Bell Huntington).

— Когда была первая попытка получить металлический водород? Это не Леонид Верещагин в вашем институте?

— Это не первая попытка, а первое заявление об успешном эксперименте. Тут следующие проблемы. Водород сильно портит алмазные наковальни, проникая в них. Металл можно сжать до четырех мегабар, а водород — выше двух ни у кого не получалось. Исторически первое заявление об успехе было сделано, действительно, Верещагиным. Там была следующая схема: алмазная игла плюс алмазная плоскость, причем брались проводящие алмазы с металлом. Игла плохо контролировалась. Размер острия — порядка микрона. Если посмотреть в микроскоп, то острие — куча зубчиков. Наблюдалось сопротивление через пленку твердого водорода между иглой и плоскостью. Когда сжимали, сопротивление падало, когда отпускали — восстанавливалось. Но потом группа Сергея Стишова в Институте кристаллографии и американцы продемонстрировали, что такое же происходит, когда давят, например, иглой из твердого сплава через бумагу, что это связано не с металлизацией, а с эффектом прокола.

Потом все перешли на плоские алмазные наковальни, где можно смотреть оптику, куда можно пытаться заводить электроды. Проблема разрушения наковален выше двух мегабар осталась. Решили давить при низких температурах — гелиевой, азотной, тогда подавляется диффузия водорода. Так можно пройти до трех с половиной мегабар.

— Но вот я смотрю уже на современную фазовую диаграмму — там обозначен фазовый переход ниже трех мегабар.

— Эти фазы — I, II, III, не металлы. В процессе экспериментов люди обнаружили эту фазу III, которая оказалась черной — это полупроводник. А до металла никак не доходили. Теоретики загнали фазовый переход в интервал между 4,5 и 6 мегабарами. Наш Михаил Еремец решил идти выше по температуре на диаграмме — там, где фазы IV и V. Он покрыл алмазные наковальни тонкой пленкой металла, чтобы их защитить, и тогда можно давить до трех мегабар при комнатной температуре. У него получились скачки сопротивления — вроде как металлизация. Но величины сопротивления получились большими — килоомы, а не миллиомы, как должно быть. Сейчас сложился консенсус, что фаза IV или V — какая-то из них является узкощелевым полупроводником, но ещене металлом. Причем эта фаза частично атомарная, частично молекулярная. Потом все решили повторять Еремца, и сейчас группа Григорянца (они, пожалуй, стали лидерами в этой области при повышенных температурах) работает между тремя и четырьмя мегабарами, где красный пунктир на диаграмме. Проблема в том, что рентгеноструктурный анализ здесь не работает, дифракция нейтронов — тоже (слишком тонкий образец). Остается лишь рамановская спектроскопия. И у них появляется то один, то другой пичок — вот одна фаза, вот вторая, а что это такое, какая у них структура — никто не знает. Ну, и еще следят за самым высокочастотным пиком — это внутримолекулярный виброн — его наличие означает, что водород еще молекулярный, а не атомарный.

— Это предыстория. Что радикально нового произошло сейчас?

— Это новая статья Диаса и Сильверы, опубликованная в Science . До этого года все упирались в эти четыре мегабара. Сильвера вернулся в низкие температуры и заявил, что смог пробиться к пяти мегабарам. По его словам, это удалось благодаря более тщательной полировке алмаза — обработке с атомарной точностью. Они убирали ионными пучками неровности в несколько атомных слоев. Так им удалось пройти до 5 мегабар, и они увидели, что на 4,9 мегабара водород начал отражать свет. До этого он был черным, а выше 4,9 мегабара стал отражать свет. Коэффициент отражения выше 90%.

— Минутку, как это фиксируется? Они смотрят сквозь алмазные наковальни?

— Да. На фотографии видно, как это происходит. Этот эллипс — твердый водород диаметром девять микрон и толщиной в микрон. При малом давлении он был прозрачным, потом стал черным, а при пяти мегабарах стал отражать свет. Спектр отражения у них есть во всемвидимом диапазоне. Он согласуется со спектром отражения нормального металла. Хотя никто не знает, твердый он или жидкий, никто не знает, какая у него структура, но он отражает.
Фотографии водорода при разном давлении. Образец освещался светодиодами с двух сторон. Слева — 205 ГПа (образец прозрачен, виден задний светодиод), в центре — 415 ГПа (образец почернел и стал непрозрачен, справа вверху — гало от несфокусированного светодиода, светлое кольцо — рениевая прокладка), справа — 495 ГПа — образец стал отражать. Центральное пятно, водород, отражает заметно больше, чем рениевое кольцо. Фото из статьи Dias R. P. et al., Science 10.1126/science.aal1579 (2017) Конечно, поскольку сейчас в этой области большая гонка, то почти все группы заявили протест, дескать, всё это ерунда, поскольку у них алмазы ничуть не хуже. Говорят, что надо разбираться, что, может быть, это отразился кусок металлической прокладки, притом узкощелевые проводники тоже неплохо отражают. В общем, надо доказать, что это металл. Либо кто-то, например Еремец или Шимицу, изловчится и засунет туда электроды и измерит сопротивление аккуратно, либо тот же Сильвера или кто-то еще повторит этот опыт и снимет спектр начиная с дальнего инфракрасного диапазона. Дело в том, что отражение в видимом свете слабо убеждает физиков, что это металл, а если это широкий диапазон, тогда это действительно аргумент. Наконец, если это сверхпроводник, то можно посмотреть эффект Мейснера, есть резонансные методы — такие образцы на наковальнях вполне измеримы на сверхпроводимость. Таково состояние дел. Сейчас будут повторять эксперимент, в том числе и сам Сильвера. А пока есть факт сильно отражающего водорода, опубликованный в Science, где три рецензента.

— Как насчет использования металлического водорода в народном хозяйстве? Говорят, что он, возможно, метастабилен, говорят про высокотемпературную сверхпроводимость. Это хоть в какой-то степени серьезно?

— Это скорее пиар. Даже Сильвера считает, что вряд ли. Структура неизвестна — рентген здесь не снимешь. А для большинства теоретических структур, которые получают на численных моделях, нет динамической устойчивости при нормальных давлениях, т. е. при снятии давления они должны разрушаться. Хотя формально исключить этого нельзя — мало ли какая еще структура может там оказаться. Но опять же, если структура выживет при нормальном давлении и гелиевых температурах, это не значит, что мы можем ее нагреть, — таких примеров нет. Так что это в основном пиар. Хотя задача чрезвычайно интересна с фундаментальной точки зрения. Например, говорят о том, что это может быть одновременно сверхпроводящая и сверхтекучая жидкость. Если же рассуждать о практике, то тут скорее могут пригодиться сильно богатые водородом гидриды. Под давлением стабилизируются многие гидриды типа (металл)Н 8 , например. Многие из них, видимо, могут быть метастабильными при нормальном давлении и тоже иметь уникальные свойства.

— Но в астрофизике металлический водород так и так важен. Тоже своего рода «народное хозяйство». Еще вопрос по поводу структуры. Рентгеном ее снять не удается потому, что образец слишком тонок?

— Даже если бы он был побольше — у него всего один электрон, у бедного. Всё, что легче углерода, — с трудом поддается исследованию рентгеном для образцов микронного размера. В принципе, можно было бы снять нейтронами в случае дейтерия (но тогда образец должен быть больше хотя бы раз в десять) либо очень мощным рентгеном на монокристалле водорода — так уже делалось до одного мегабара, но тоже для образцов в десять раз больше…

Вадим Бражкин
Беседовал Борис Штерн

Металлический водород, который находится под давлением порядка четырех с половиной миллионов атмосфер, может иметь наибольшую критическую температуру перехода в ряду высокотемпературных проводников. Согласно предварительным расчетам итало-германской группы ученых физиков-теоретиков, элемента равна 242 К (минус тридцать один градус Цельсия).

Газообразный водород превращается в жидкость при температуре 20 К. Если снизить температуру ещё на 6 К, то можно перевести элемент в твердое состояние. Ханингтон и Вигнер в 1935-м году предположили в лаборатории. По их мнению, необходимо было использовать высокое давление - около 25 Гпа (один Гпа примерно равен десяти тысячам атмосфер). Так, под воздействием высокого давления элемент превратится в изотоп водорода - из диэлектрического элемента в проводящий. Следует отметить, что газ в исходном состоянии обладает проводящими свойствами. Так же, как и металлы, элемент проводит электричество, при этом он может и не находиться в твердом состоянии. Другими словами, водород может представлять собой и жидкость, обладающую

В 1971-м году в свет вышла работа советских ученых-теоретиков во главе с Каганом. Группа физиков доказывала, что металлический водород может являться метастабильным. Это означает, что после прекращения воздействия элемент не перейдет в свое первоначальное состояние - газ, обладающий диэлектрическими свойствами. Вместе с этим до сих пор неясно, будет ли эта стадия достаточно продолжительной для того, чтобы успеть использовать металлический водород.

Первый успех в опытном плане был получен в 1975-м году, в феврале. Группа ученых во главе с Верещагиным создала металлический водород. Под воздействием температуры в 4,2 К в тонком слое элемента при помощи алмазных наковален подвергнутом также воздействию давления порядка 300 Гпа наблюдалось снижение электрического сопротивления газа в миллионы раз. Это свидетельствовало о переходе водорода в металлическое состояние.

Для получения высокого давления применяется алмазная наковальня. Она представлена в виде двух остриями прижимающихся друг к другу при помощи пресса. В итоге на срезе, диаметр которого - порядка нескольких десятых долей миллиметра, образуется необходимое давление. На этом участке в ячейке располагается охлажденный образец. К образцу в этом же месте подводится оборудование: миниатюрные термопары, электроды и прочие измерительные приборы.

Следующим этапом в работе ученых стало выяснение возможности последующего перехода металлического состояния в сверхпроводящее. Первым задался этой проблемой Нейл Эшкрофт. Теоретик предсказал, что у металлического водорода появятся «экзотические» свойства под воздействием высоких температур, превышающих 200 К.

Сравнительно недавно вышла работа немецких и итальянских физиков. Авторы утверждают, что за счет электрон-фононного механизма формирования куперовских пар достигается рекордный показатель критической температуры - 242 К. Вместе с этим, однако, необходимо и воздействие высокого давления - порядка 450 Гпа, а это, в свою очередь, в четыре с половиной миллиона раз превышает атмосферное давление.

При электрон-фононном формировании куперовских пар при движении в периодической решетке в кристалле электрон притягивает ближайшие ионы, заряженные положительно. При этом происходит незначительная деформация решетки, и на короткое время увеличивается концентрация положительного заряда. За счет увеличенной концентрации притягивается другой электрон. Так, притягиваются оба электрона. При ненулевой температуре происходит колебание ионов около своих состояний равновесия. Фононы - это кванты данных колебаний.

Изображение алмазных наковален, сжимающих образец молекулярного водорода. При высоком давлении водород переходит в атомарное состояние, как показано справа. Источник: Dias & Silvera, 2017

В 1935 году ученые Юджин Вигнер и Бэлл Хантингтон предсказали возможность перевода водорода в металлическое состояние под воздействием огромного давления - 250 тысяч атмосфер. Немного позже эта точка зрения была пересмотрена, специалисты повысили оценку давления, которое требуется для фазового перехода. Все это время условия перехода считались достижимыми, и ученые пробовали «взять планку», необходимую для перехода водорода в новую фазу. Впервые металлический водород пытались получить в 1970-х. Повторные попытки были предприняты в 1996, 2008 и 2011 году. Ранее сообщалось, что в 1996 году ученым из Германии удалось на долю микросекунды перевести водород в металлическое состояние, хотя не все согласны с этим.

Что касается давления, необходимого для получения металлического водорода, то с развитием квантовой механики и физики вообще стало понятно, что давление должно быть примерно в 20 раз более высоким, чем считалось ранее - не 25 ГПа, а 400 или даже 500 ГПа. Считается, что большие количества металлического водорода присутствуют в ядрах планет-гигантов - Юпитера, Сатурна и крупных внесолнечных планет. Благодаря гравитационному сжатию под газовым слоем должно находиться ядро из металлического водорода. Понятно, что для того, чтобы получить гигантское давление, нужны особые технологии и методы. Добиться желаемого получилось благодаря использованию двух алмазных наковален.

Прочность наковальни была усилена напылением из оксида алюминия, которое оказалось непроницаемым для атомов водорода. Образец водорода был сжат между заостренными концами двух алмазных наковален и при давлении в 495 ГПа ученые добились перехода образца в металлическую фазу.


Источник: Dias & Silvera, 2017

Во всяком случае, образец сначала потемнел, а затем стал отражать свет. При относительно низких показателях давления образец был непрозрачным, ток он не проводил. Эксперимент, проведенный Исааком Силвера (Isaac Silvera) и Ранга Диас (Ranga Dias), был повторным. Впервые добиться перехода водорода в металлическую фазу ученым удалось в середине 2016 года. Но результаты эксперимента нуждались в подтверждении, повторном опыте. Поскольку результаты изначального опыта подтвердились, их можно считать корректными.

К текущему результату ученые шли несколько лет. Только на то, чтобы достичь давления, при котором водород разбивается на индивидуальные атомы, у Силвера и Диас ушло три года. Давление, о котором идет речь - 380 ГПа.

После этого увеличение давления подразумевало необходимость усиления прочности алмазных наковален, которые использовались в эксперименте. Для этого стали напылять тончайшую пленку из оксида алюминия. Без усиления прочности алмазы, которые являются наиболее твердыми минералами на Земле, начинают разрушаться при увеличении давления выше показателя в 400 ГПа.

Учеными была проделана большая работа по изучению алмазов. Причин разрушения могло быть несколько - от дефектов структуры кристалла до влияния самого сжатого до огромной плотности водорода. Для того, чтобы решить первую проблему, специалисты тщательным образом проверяли структур кристалла под микроскопом с большим увеличением. «Когда мы просмотрели на алмаз под микроскопом, мы обнаружили дефекты, которые делают этот минерал уязвимым к внешним факторам», - заявил Силвера. Вторая проблема была решена при помощи напыления, противодействующего утечке атомов и молекул водорода.

Пока что сложно сказать , какую форму металла получили англичане - твердую или жидкую. Сами они затрудняются сказать, хотя считают, что водород перешел в фазу жидкого металла, поскольку это предсказано расчетами. В чем они уверены, так это в том, что образец водорода после сжатия стал в 15 раз более плотным, чем до начала этой процедуры. Температура водорода, который поместили в алмазную наковальню, составила 15К. После перехода элемента в металлическую фазу его нагрели до 83 К, и он сохранил свои металлические свойства. Расчеты показывают, что металлический водород может быть метастабильным, то есть сохранять свои свойства даже после того, как внешние факторы, которые привели к переходу элемента в металлическую фазу, будут ослаблены.

Зачем человеку металлический водород? Считается, что в таком состоянии он проявляет свойства высокотемпературного сверхпроводника. Кроме того, метастабильные соединения металлического водорода могут использоваться в качестве компактного, эффективного и чистого ракетного топлива. Так, при переходе металлического водорода в молекулярную фазу высвобождается примерно в 20 раз больше энергии, чем при сжигании килограмма смеси кислорода и водорода - 216 Мдж/кг.

«Для получения металлического водорода нам понадобилось огромное количество энергии. А если вы снова переведете атомарный металлический водород в молекулярное состояние, вся эта энергия высвободится, так что мы можем получить самое мощное ракетное топливо в мире, что совершит революцию в ракетостроении», - заявили авторы исследования. По их мнению, новое топливо, при условии его использования, позволит легко достичь других планет. Времени на путешествие к ним будет затрачено гораздо меньше, чем в настоящее время, с использованием современных технологий.

Металлический водород — это разновидность вещества, фаза водорода, которая возникает при достаточном сжатии, ведет себя как электрический проводник.

Эта фаза была предсказана в 1935 году Юджином Вигнером и Хиллардом Беллом Хантингтоном и с тех пор производство металлического водорода в лаборатории было названо «святым Граалем физики высокого давления». Металлический водород будет жидким даже при очень низких температурах.

При высоких давлениях и температурах металлический водород может существовать в виде жидкости, а не твердого тела, и исследователи считают, что он присутствует в больших количествах в горячих и гравитационно сжатых недрах , Сатурна и некоторых внесолнечных планет.

Металлический водород

Твердое вещество. Жидкость. Газ. Материалы, которые окружают нас в нашем обычном, повседневном мире, делятся на три аккуратных лагеря. Нагрейте твердый куб воды (лёд), и когда он достигнет определенной температуры, то переходит в фазу жидкости. Продолжайте проворачивать тепло и в конце концов, у вас будет газ: водяной пар.

Каждый элемент и молекула имеют свою «фазовую диаграмму», карту того, что вы должны ожидать, если примените к ней определенную температуру и давление. Диаграмма уникальна для каждого элемента, потому что она зависит от точной атомно-молекулярной компоновки и того, как она взаимодействует с собой в различных условиях. Поэтому ученым нужно изучать эти диаграммы посредством трудных экспериментов и тщательной теории.

Когда речь заходит о водороде, мы обычно не сталкиваемся с этим вообще, за исключением случаев, когда он подпитывается кислородом, чтобы сделать более привычную воду. Даже когда мы получаем чистый водород — он соединяется как двухатомная молекула, почти всегда как газ. Если вы заманили водород в бутылку и довели его температуру до минус 240 градусов Цельсия, водород станет жидким, а при минус 259 градусов C становится твердым.

Вы могли бы подумать, что на противоположном конце температурной шкалы горячий газ водорода останется … горячим газом. И это правда, если давление будет низким. Но сочетание высокой температуры и высокого давления приводит к некоторому интересному поведению.

Погружаясь в Юпитер

На Земле, как мы видели, поведение водорода простое. Но Юпитер — это не Земля, и водород, найденный в изобилии внутри под большими облаками и завихряющимися штормами его атмосферы может быть вытеснен за пределы его обычных пределов.

Погружаясь глубоко под видимую поверхность планеты, давление и температура резко возрастают, и газообразный водород медленно уступает место слою сверхкритического газожидкостного гибрида. Из-за этих экстремальных условий водород не может окунуться в узнаваемое состояние. Слишком жарко, чтобы оставаться жидкостью, но при слишком большом давлении свободно плавать в качестве газа — это новое состояние материи.

Погружаясь глубже, водород становится еще более странным

Даже в своем гибридном состоянии, в тонком слое расположенном под вершинами облаков, водород все еще подпрыгивает, как двухатомная молекула. Но при достаточном давлении (скажем, в миллион раз более интенсивном, чем давление воздуха на Земле на уровне моря) даже те связи молекул недостаточно сильны, чтобы противостоять подавляющим сжатиям.

Ниже, примерно 13 000 км под вершинами облаков, представляет собой хаотическую смесь свободных ядер водорода, которые представляют собой только одиночные протоны, смешанные с освобожденными электронами. Вещество возвращается к жидкой фазе, но то, что делает водород водородом, теперь полностью дезасолируется в его составные части. Когда это происходит при очень высоких температурах и низких давлениях, мы называем это плазмой — то же самое, что и основная часть солнца или молнии.

Но в глубинах Юпитера давление приводит к тому, что водород ведет себя по-другому чем плазма. Вместо этого он приобретает свойства, более похожие на свойства металла. Следовательно: жидкий металлический водород.

Жидкий металлический водород

Большинство элементов на периодической таблице — металлы: они твердые, блестящие и обеспечивают хорошую электрическую проводимость. Элементы получают эти свойства из-за того, что представляют собой при нормальных температурах и давлениях: они соединяются образуя решетку и каждый жертвует один или несколько электронов в общий горшок. Эти диссоциированные электроны свободно перемещаются, прыгая от атома к атому, как им заблагорассудится.

Если вы возьмете стержень золота и растопите его, у вас все еще есть все преимущества электронного обмена металла (кроме твердости), поэтому «жидкий металл» — это не странное понятие. Некоторые элементы, которые обычно не являются металлическими, например углерод, могут использовать эти свойства при определенных условиях.

Итак, «металлический водород» не должен быть странной идеей: это просто неметаллический элемент, который начинает вести себя как металл при высоких температурах и давлениях.

Свойства металлического водорода

Большая проблема состоит в том, что металлический водород не является типичным металлом. У разнородных металлов есть специальная решетка ионов, встроенных в море свободноплавающих электронов. Но урезанный атом водорода — это всего лишь один протон и нет ничего, что протон мог бы сделать, чтобы построить решетку.

Когда вы сжимаете металлический стержень, вы пытаетесь сблизить блокирующие ионы. Электростатическое отталкивание обеспечивает всю опору, чтобы металл был сильным. Но протоны подвешены в жидкости? Как жидкий металлический водород внутри Юпитера поддерживает вес атмосферы над ним?

Ответ — это давление вырождения, квантово-механическая причуда вещества в экстремальных условиях. Исследователи считали, что крайность может быть найдена только в экзотических, ультранизких средах, таких как белые карлики и нейтронные звезды. Даже когда электромагнитные силы перегружены, одинаковые частицы, такие как электроны, могут быть сжаты так плотно вместе — они отказываются разделять одно и то же квантовомеханическое состояние.

Другими словами, электроны никогда не будут разделять один и тот же уровень энергии, а это означает, что они будут накапливаться друг на друге, никогда не приближаясь, даже если вы очень сильно нажимаете.

Другой способ взглянуть на ситуацию — через так называемый принцип неопределенности Гейзенберга: если вы попытаетесь зафиксировать положение электрона, нажав на него, его скорость может стать очень большой, что приведет к силе давления, которая сопротивляется дальнейшему сжатию.

Итак, внутренность Юпитера странная — суп из протонов и электронов, нагретый до температур выше, чем у поверхности Солнца, страдает от давления в миллионы раз сильнее, чем на Земле, и вынужден раскрыть их истинную квантовую природу.