Из закона кирхгофа следует что. Законы Кирхгофа и их использование

Закон Ома:

т.е. ток I , протекающий по участку цепи, будет равен напряжению на этом участке U (или разности потенциалов на концах рассматриваемого участка с учетом знака ) деленному на сопротивление участка R . Закон можно записать и как U=I×R . Найденную из этого равенства величину U называют падением напряжения на участке цепи с сопротивлением R , через который протекает ток I .

В общем случае (при наличии источников ЭДС)

например, для участка цепи

Первый закон Кирхгофа :алгебраическая сумма токов, сходящихся в узле, равна нулю , т.е. .

При составлении уравнений пользуются правилом: если ток входит в узел, то его в уравнение подставляют со знаком «+», если выходит - «-»:

,

то есть сумма токов приходящих к узлу цепи равна сумме токов уходящих из узла.

Второй закон Кирхгофа : алгебраическая сумма ЭДС, действующих в замкнутом контуре, равна алгебраической сумме падений напряжений на сопротивлениях этого контура:

В качестве примера рассмотрим цепь, схема которой приведена на рис. 4. Схема цепи содержит 6 ветвей (m=6) и 4 узла: a, b, c, d (n=4). По каждой ветви проходит свой ток, следовательно, число неизвестных токов равно числу ветвей, и для определения токов необходимо составить m уравнений. При этом по первому закону Кирхгофа (1.3) составляют уравнения для (n–1) узлов. Недостающие m–(n–1) уравнения получают по второму закону Кирхгофа (1.4), составляя их для m–(n–1) взаимно независимых контуров. Рекомендуется выполнять операции расчета в определенной последовательности.

1. Обозначение токов во всех ветвях. Направление токов выбираем произвольно, но в цепях с источниками ЭДС рекомендуется, чтобы направление токов совпадало с направлением ЭДС.

2. Составление уравнений по первому закону Кирхгофа. Выбираем 4–1=3 узла (a, b, c) и для них записываем уравнения:

узел a: I 1 - I 2 - I 3 = 0;

узел b: I 2 - I 4 + I 5 = 0;

узел c: I 4 - I 5 + I 6 = 0.

3. Составление уравнений по второму закону Кирхгофа. Необходимо составить 6–3=3 уравнения. В схеме на рис. 4 выбираем контура I, II, III и для них записываем уравнения:

контур I: E 1 = I 1 (r 01 + R 1) + I 3 R 3 ;

контур II: 0 = I 2 R 2 + I 4 R 4 + I 6 R 7 - I 3 R 3 ;

контур III: -E 2 = -I 5 (r 02 + R 5 + R 6) - I 4 R 4 .

4. Решение полученной системы уравнений и анализ результатов. Полученная система из шести уравнений решается известными математическими методами. Если в результате расчетов численное значение тока получено со знаком «минус», это означает, что реальное направление тока данной ветви противоположно принятому в начале расчета. Если в ветвях с ЭДС токи совпадают по направлению с ЭДС, то данные элементы работают в режиме источников, отдавая энергию в схему. В тех ветвях, где направления тока и ЭДС не совпадают, источники ЭДС работает в режиме потребителя.



5. Проверка правильности расчетов. Для проверки правильности произведенных расчетов можно на основании законов Кирхгофа написать уравнения для узлов и контуров схемы, которые не использовались при составлении исходной системы уравнений:

узел d: I 3 + I 6 - I 1 = 0

внешнийконтурсхемы: E 1 - E 2 = I 1 (r 01 + R 1) + I 2 R 2 - I 5 (r 02 + R 5 +R 6) +I 6 R 7 .

Уравнения составляют в следующей последовательности:

− произвольно выбираем направление токов ветвях (направления токов обозначены стрелками);

− составляем уравнения по первому закону Кирхгофа для узлов. Количество уравнений n должно быть равно количеству узлов m без одного (n=m -1). Например, для верхнего узла:

;

− произвольно задаемся направлением обхода контуров (например, против часовой стрелки);

− составляем уравнения по второму закону Кирхгофа для независимых контуров. При составлении пользуются правилами: если направление ЭДС совпадает с направлением обхода контура, то в уравнение она подставляется со знаком «+», в противном случае с «-»; если направление тока в сопротивлении совпадает с направлением обхода контура, то падение напряжения подставляется со знаком «+», в противном случае со знаком «-».

Баланс мощностей

Мощность, определяющая непроизводительный расход энергии, например, на тепловые потери в источнике, называется мощностью потерь.

По закону сохранения энергии мощность источника равна сумме мощностей потребителей и потерь.

Это выражение представляет собой баланс мощности электрической цепи.

Для рассмотренной выше схемы независимой проверкой является составление уравнения баланса мощностей с учетом режимов работы элементов схемы с ЭДС:



Если активная мощность, поставляемая источниками питания, равна по величине активной мощности, израсходованной в пассивных элементах электрической цепи, то правильность расчетов подтверждена.

7. Методы расчёта сложных разветвлённых цепей постоянного тока. Взаимное преобразование схем соединений треугольником и звездой пассивных элементов цепи

Методы расчёта сложных разветвлённых цепей постоянного тока:

1. С помощью уравнений электрического состояния (1 и 2 законы Кирхгофа)

2. Метод наложения

Используется для линейной электрической цепи. Заключается в том, что если цепь подвергается воздействию нескольких источников ЭДС одновременно, то реакция (ток) цепи на эти источники будет равна алгебраической сумме реакций (токов) на каждое воздействие отдельно.

3. Метод контурных токов

В качестве промежуточных переменных выбирают токи, замыкающиеся в каждом контуре и их называют контурными токами. Метод выгоден тогда, когда

4. Метод узлового напряжения

Если цепь имеет 2 узла или путем не сложных преобразований может быть приведена к 2 узлам, то используется метод узлового напряжения.

5. Метод эквивалентного источника

Суть метода эквивалентного генератора состоит в нахождении тока в одной выделенной ветви, при этом остальная часть сложной электрической цепи заменяется эквивалентным ЭДС Е экв, с её внутренним сопротивлением r экв. При этом часть цепи, в которую входит источник ЭДС называют эквивалентным генератором или активным двухполюсником, откуда и название метода.

Электрические цепи однофазного переменного тока. Переменные ЭДС, напряжения и токи. Цепи синусоидального тока. Основные характеристики синусоидальных электрических величин. Мгновенное, амплитудное и действующее значения. Среднее значение синусоидальной величины.

Переменным называется ток, который изменяется в течение времени по величине или направлению. Переменный ток получил преимущественное распространение в промышленности, что связано с его преимуществами перед постоянным током:

− легко повышается и понижается напряжение с помощью трансформаторов;

− генераторы и двигатели переменного тока проще по устройству, в эксплуатации, надежней и дешевле;

− переменный ток удобнее вырабатывать на электростанциях;

− многие физические явления проявляются только при переменном токе.

− В электрических цепях переменного тока наиболее часто используют синусоидальную форму, характеризующуюся тем, что все токи и напряжения являются синусоидальными функциями времени. Синусоидальная форма тока и напряжения позволяет производить точный расчет электрических цепей с использованием метода комплексных чисел и приближенный расчет на основе метода векторных диаграмм.

Недостатки: в цепях питания потребителей таким током могут происходить перегрузки, вызванные реактивной мощностью потребителей (когда в цепи питания присутствуют индуктивности или емкости); переменный ток приводит к образованию переменных электромагнитных полей, воздействующих на работу различной радиоаппаратуры и др.

Мгновенное значение (ЭДС или напряжения или тока) - значение величины в данный момент времени.обозначается чаще всего маленькими буквами: e, u,i.

Амплитудное значение (ЭДС или напряжения или тока) - максимальное значение.

се электрические цепи подчиняются первому и второму законам (правилам) Кирхгофа.

Первый закон Кирхгофа можно сформулировать двояко:

1) алгебраическая сумма токов, подтекающих к любому узлу схемы, равна нулю;

2) сумма подтекающих к любому узлу токов равна сумме утекающих от узла токов.

Применительно к рис. 2.8, если подтекающие к узлу токи считать положительными, а утекающие - отрицательными, то согласно первой формулировке

согласно второй -

Физически первый закон Кирхгофа означает, что движение зарядов в цепи происходит так, что ни в одном из узлов они не скапливаются.

Если мысленно рассечь любую схему произвольной плоскостью и все находящиеся по одну сторону от нее рассматривать как некоторый большой «узел», то алгебраическая сумма токов, входящих в этот «узел», будет равна нулю.

Второй закон Кирхгофа также можно сформулировать двояко:

1) алгебраическая сумма падений напряжения в любом замкнутом контуре равна алгебраической сумме ЭДС вдоль того же контура:

(в каждую из сумм соответствующие слагаемые входят со знаком плюс, если они совпадают с направлением обхода контура, и со знаком минус, если они не совпадают с ним);

2) алгебраическая сумма напряжений (не падений напряжения!) вдоль любого замкнутого контура равна нулю:

Для периферийного контура схемы рис. 2.9

Законы Кирхгофа справедливы для линейных и нелинейных цепей при любом характере изменения во времени токов и напряжений.

Сделаем два замечания: 1) запись уравнения по второму закону Кирхгофа в форме (2.4) может быть получена, если обойти какой-либо контур некоторой схемы и записать выражение для потенциала произвольной точки этого контура через потенциал этой же точки (взяв ее за исходную при обходе) и падения напряжения и ЭДС; 2) при записи уравнений по второму закону Кирхгофа в форме (2.4а) напряжения Uklучастков цепи включают в себя и падения напряжения участков, и имеющиеся на этих участках ЭДС.

Первое правило

Сколько тока втекает в узел, столько из него и вытекает. i 2 + i 3 = i 1 + i 4

Первое правило Кирхгофа гласит, что алгебраическая сумма токов в каждом узле любой цепи равна нулю. При этом втекающий в узел ток принято считать положительным, а вытекающий - отрицательным:

Иными словами, сколько тока втекает в узел, столько из него и вытекает. Это правило следует из фундаментального закона сохранения заряда .

Второе правило

Второе правило Кирхгофа (правило напряжений Кирхгофа) гласит, что алгебраическая сумма падений напряжений на всех ветвях, принадлежащих любому замкнутому контуру цепи, равна алгебраической сумме ЭДС ветвей этого контура. Если в контуре нет источников ЭДС (идеализированных генераторов напряжения), то суммарное падение напряжений равно нулю:

для постоянных напряжений

для переменных напряжений

Это правило вытекает из 3-го уравнения Максвелла, в частном случае стационарного магнитного поля.

Иными словами, при полном обходе контура потенциал, изменяясь, возвращается к исходному значению. Частным случаем второго правила для цепи, состоящей из одного контура, является закон Ома для этой цепи. При составлении уравнения напряжений для контура нужно выбрать положительное направление обхода контура. При этом падение напряжения на ветви считают положительным, если направление обхода данной ветви совпадает с ранее выбранным направлением тока ветви, и отрицательным - в противном случае (см. далее).

Правила Кирхгофа справедливы для линейных и нелинейных линеаризованных цепей при любом характере изменения во времени токов и напряжений.

Особенности составления уравнений для расчёта токов и напряжений

Если цепь содержит узлов, то она описывается уравнениями токов. Это правило может применяться и для других физических явлений (к примеру, система трубопроводов жидкости или газа с насосами), где выполняется закон сохранения частиц среды и потока этих частиц.

Если цепь содержит ветвей, из которых содержат источники тока ветви в количестве , то она описывается уравнениями напряжений.

Правила Кирхгофа, записанные для узлов или контуров цепи, дают полную систему линейных уравнений, которая позволяет найти все токи и все напряжения.

Перед тем, как составить уравнения, нужно произвольно выбрать:

положительные направления токов в ветвях и обозначить их на схеме, при этом не обязательно следить, чтобы в узле направления токов были и втекающими, и вытекающими, окончательное решение системы уравнений всё равно даст правильные знаки токов узла;

положительные направления обхода контуров для составления уравнений по второму закону, с целью единообразия рекомендуется для всех контуров положительные направления обхода выбирать одинаковыми (напр.: по часовой стрелке).

Если направление тока совпадает с направлением обхода контура (которое выбирается произвольно), падение напряжения считается положительным, в противном случае - отрицательным.

При записи линейно независимых уравнений по второму правилу Кирхгофа стремятся, чтобы в каждый новый контур, для которого составляют уравнение, входила хотя бы одна новая ветвь, не вошедшая в предыдущие контуры, для которых уже записаны уравнения по второму закону (достаточное, но не необходимое условие ).

В сложных непланарных графах электрических цепей человеку трудно увидеть независимые контуры и узлы, каждый независимый контур (узел) при составлении системы уравнений порождает ещё 1 линейное уравнение в определяющей задачу системе линейных уравнений. Подсчёт количества независимых контуров и их явное указание в конкретном графе развит в теории графов .

На этом рисунке для каждой ветви обозначен протекающий по ней ток (буквой «I») и напряжение между соединяемыми ею узлами (буквой «U»)

Количество узлов: 3. Количество ветвей (в замкнутых контурах): 4. Количество ветвей, содержащих источник тока: 0. Количество контуров: 2. Для приведённой на рисунке цепи, в соответствии с первым правилом, выполняются следующие соотношения:

Обратите внимание, что для каждого узла должно быть выбрано положительное направление, например, здесь токи, втекающие в узел, считаются положительными, а вытекающие - отрицательными.

Решение полученной линейной системы алгебраических уравнений позволяет определить все токи узлов и ветвей, такой подход к анализу цепи принято называть методом контурных токов .

В соответствии со вторым правилом, справедливы соотношения:

Полученные системы уравнений полностью описывают анализируемую цепь, и их решения определяют все токи и все напряжения ветвей, такой подход к анализу цепи принято называть методом узловых потенциалов .

Законы Кирхгофа (более корректно - правила Киргхгофа) применяются при расчете сложных (разветвленных) электрических цепей. Предлагаю рассмотреть их по очереди и начать, естественно, с первого.

Определение и формула первого закона Кирхгофа, который гласит: алгебраическая сумма токов, сходящихся в узле равна нулю, иллюстрируются рисунком 1.

  • I i - ток в узле,
  • n - число проводников, сходящихся в узле,
  • токи, втекающие в узел (I 1 , In ) считаются положительными,
  • вытекающие токи (I 2 , I 3 ) - отрицательными.

В таком виде этот закон звучит и выглядит, наверное, очень академично, поэтому предлагаю все несколько упростить.

Нарисуем разветвленную электрическую цепь в более привычном виде (рис.2) и дадим такую формулировку:

Сумма токов втекающих в узел равна сумме токов, вытекающих из узла.

Для этого случая формула первого закона Кирхгофа примет вид: I= I 1 +I 2 +...+In , что для повседневных вычислений гораздо удобнее.

ВТОРОЙ ЗАКОН КИРХГОФА

Второй закон Кирхгофа определяет зависимость между падениями напряжений и ЭДС в замкнутых контурах и имеет следующий вид (рис.3) и определение:

алгебраическая сумма (с учетом знака) падений напряжений на всех ветвях любого замкнутого контура цепи, равна алгебраической сумме ЭДС ветвей этого контура.

При отсутствии в контуре ЭДС сумма падений напряжений равна 0.

Теперь несколько пояснений по практическому применению этого правила Кирхгофа:

  • поскольку, алгебраическая сумма требует учета знака следует выбрать направление обхода контура (на рис.3 - по часовой стреклке), токи и напряжения, совпадающие с этим направлением считать положительными, иные - отрицательными. При затруднении в определении направления тока, возьмите произвольное, если в результате вычислений получите результат со знаком "-", поменяйте выбранное направление на противоположенное.
  • для нашего примера можно записать:
    U 1 +U 3 -U 2 =0
    U 4 +U 5 -U 3 =0
  • кроме того, руководствуясь первым правилом Кирхгофа:
    I вх - I 1 - I 2 = 0
    I 1 - I 3 - I 4 =0
    I 4 - I 5 =0
    I 2 + I 3 + I 5 - I вых =0 ,
получаем систему из 6 уравнений, полностью описывающую рассматриваемую электрическую цепь.

© 2012-2019 г. Все права защищены.

Все представленные на этом сайте материалы имеют исключительно информационный характер и не могут быть использованы в качестве руководящих и нормативных документов

В сложных электрических цепях, то есть где имеется несколько разнообразных ответвлений и несколько источников ЭДС имеет место и сложное распределение токов. Однако при известных величинах всех ЭДС и сопротивлений резистивных элементов в цепи мы можем вычистить значения этих токов и их направление в любом контуре цепи с помощью первого и второго закона Кирхгофа . Суть законов Кирхгофа я довольно кратко изложил в своем учебнике по электронике , на страницах сайта http://www.сайт.

Пример сложной электрической цепи вы можете посмотреть на рисунке 1.

Рисунок 1. Сложная электрическая цепь.

Иногда законы Кирхгофа называют правилами Кирхгофа , особенно в старой литературе.

Итак, для начала напомню все-таки суть первого и второго закона Кирхгофа, а далее рассмотрим примеры расчета токов, напряжений в электрических цепях, с практическими примерами и ответами на вопросы, которые задавались мне в комментариях на сайте.

Формулировка №1: Сумма всех токов, втекающих в узел, равна сумме всех токов, вытекающих из узла.

Формулировка №2: Алгебраическая сумма всех токов в узле равна нулю.

Поясню первый закон Кирхгофа на примере рисунка 2.

Рисунок 2. Узел электрической цепи.

Здесь ток I 1 - ток, втекающий в узел, а токи I 2 и I 3 - токи, вытекающие из узла. Тогда применяя формулировку №1, можно записать:

I 1 = I 2 + I 3 (1)

Что бы подтвердить справедливость формулировки №2, перенесем токи I 2 и I 3 в левую часть выражения (1) , тем самым получим:

I 1 - I 2 - I 3 = 0 (2)

Знаки «минус» в выражении (2) и означают, что токи вытекают из узла.

Знаки для втекающих и вытекающих токов можно брать произвольно, однако в основном всегда втекающие токи берут со знаком «+», а вытекающие со знаком «-» (например как получилось в выражении (2) ).

Можно посмотреть отдельный видеоурок по первому закону Кирхофа в разделе ВИДЕОУРОКИ.

Формулировка: Алгебраическая сумма ЭДС, действующих в замкнутом контуре, равна алгебраической сумме падений напряжения на всех резистивных элементах в этом контуре.

Здесь термин «алгебраическая сумма» означает, что как величина ЭДС так и величина падения напряжения на элементах может быть как со знаком «+» так и со знаком «-». При этом определить знак можно по следующему алгоритму:

1. Выбираем направление обхода контура (два варианта либо по часовой, либо против).

2. Произвольно выбираем направление токов через элементы цепи.

3. Расставляем знаки для ЭДС и напряжений, падающих на элементах по правилам:

ЭДС, создающие ток в контуре, направление которого совпадает с направление обхода контура записываются со знаком «+», в противном случае ЭДС записываются со знаком «-».

Напряжения, падающие на элементах цепи записываются со знаком «+», если ток, протекающий через эти элементы совпадает по направлению с обходом контура, в противном случае напряжения записываются со знаком «-».

Например, рассмотрим цепь, представленную на рисунке 3, и запишем выражение согласно второму закону Кирхгофа, обходя контур по часовой стрелке, и выбрав направление токов через резисторы, как показано на рисунке.

Рисунок 3. Электрическая цепь, для пояснения второго закона Кирхгофа.

E 1 - Е 2 = -UR 1 - UR 2 или E 1 = Е 2 - UR 1 - UR 2 (3)

Расчеты электрических цепей с помощью законов Кирхгофа.

Теперь давайте рассмотрим вариант сложной цепи, и я вам расскажу, как на практике применять законы Кирхгофа.

Итак, на рисунке 4 имеется сложная цепь с двумя источниками ЭДС величиной E 1 =12 в и E 2 =5 в , с внутренним сопротивлением источников r 1 =r 2 =0,1 Ом , работающих на общую нагрузку R = 2 Ома . Как же будут распределены токи в этой цепи, и какие они имеют значения, нам предстоит выяснить.

Рисунок 4. Пример расчета сложной электрической цепи.

Теперь согласно первому закону Кирхгофа для узла А составляем такое выражение:

I = I 1 + I 2 ,

так как I 1 и I 2 втекают в узел А , а ток I вытекает из него.

Используя второй закон Кирхгофа, запишем еще два выражения для внешнего контура и внутреннего левого контура, выбрав направление обхода по часовой стрелке.

Для внешнего контура:

E 1 -E 2 = Ur 1 – Ur 2 или E 1 -E 2 = I 1 *r 1 – I 2 *r 2

Для внутреннего левого контура:

E 1 = Ur 1 + UR или E 1 = I 1 *r 1 + I*R

Итак, у нас получилась система их трех уравнений с тремя неизвестными:

I = I 1 + I 2 ;

E 1 -E 2 = I 1 *r 1 – I 2 *r 2 ;

E 1 = I 1 *r 1 + I*R.

Теперь подставим в эту систему известные нам величины напряжений и сопротивлений:

I = I 1 + I 2 ;

7 = 0,1I 1 – 0,1I 2 ;

I 2 =I - I 1 ;

I 2 = I 1 – 70;

12 = 0,1I 1 + 2I.

Следующим шагом приравняем первое и второе уравнение и получим систему из двух уравнений:

I - I 1 = I 1 – 70;

12 = 0,1I 1 + 2I.

Выражаем из первого уравнения значение I

I = 2I 1 – 70;

И подставляем его значение во второе уравнение

12 = 0,1I 1 + 2(2I 1 – 70).

Решаем полученное уравнение

12 = 0,1I 1 + 4I 1 – 140.

12 + 140= 4,1I 1

I 1 =152/4,1

I 1 =37,073 (А)

Теперь в выражение I = 2I 1 – 70 подставим значение

I 1 =37,073 (А) и получим:

I = 2*37,073 – 70 = 4,146 А

Ну, а согласно первому закона Кирхгофа ток I 2 =I - I 1

I 2 =4,146 - 37,073 = -32,927

Знак «минус» для тока I 2 означает, то что мы не правильно выбрали направление тока, то есть в нашем случае ток I 2 вытекает из узла А .

Теперь полученные данные можно проверить на практике или смоделировать данную схему например в программе Multisim.

Скриншот моделирования схемы для проверки законов Кирхгофа вы можете посмотреть на рисунке 5.

Рисунок 5. Сравнение результатов расчета и моделирования работы цепи.

Для закрепления результатата предлагаю посмотреть подготовленное мной видео:

Законы Кирхгофа правила, которые показывают, как соотносятся токи и напряжения в электрических цепях. Эти правила были сформулированы Густавом Кирхгофом в 1845 году. В литературе часто называют законами Кирхгофа, но это не верно, так как они не являются законами природы, а были выведены из третьего уравнения Максвелла при неизменном магнитном поле. Но все же, первое более привычное для них название, поэтому и мы будет их называть, как это принято в литературе – законы Кирхгофа.

Первый закон Кирхгофа – сумма токов сходящихся в узле равна нулю.


Давайте разбираться. Узел это точка, соединяющая ветви. Ветвью называется участок цепи между узлами. На рисунке видно, что ток i входит в узел, а из узла выходят токи i 1 и i 2 . Составляем выражение по первому закона Кирхгофа, учитывая, что токи, входящие в узел имеют знак плюс, а токи, исходящие из узла имеют знак минус i-i 1 -i 2 =0. Ток i как бы растекается на два тока поменьше и равен сумме токов i 1 и i 2 i=i 1 +i 2 . Но если бы, например, ток i 2 входил в узел, тогда бы ток I определялся как i=i 1 -i 2 . Важно учитывать знаки при составлении уравнения.

Первый закон Кирхгофа это следствие закона сохранения электричества: заряд, приходящий к узлу за некоторый промежуток времени, равен заряду, уходящему за этот же интервал времени от узла, т.е. электрический заряд в узле не накапливается и не исчезает.

Второй закон Кирхгофа алгебраическая сумма ЭДС, действующая в замкнутом контуре, равна алгебраической сумме падений напряжения в этом контуре.

Напряжение выражено как произведение тока на сопротивление (по закону Ома).


В этом законе тоже существуют свои правила по применению. Для начала нужно задать стрелкой направление обхода контура. Затем просуммировать ЭДС и напряжения соответственно, беря со знаком плюс, если величина совпадает с направлением обхода и минус, если не совпадает. Составим уравнение по второму закону Кирхгофа, для нашей схемы. Смотрим на нашу стрелку, E 2 и Е 3 совпадают с ней по направлению, значит знак плюс, а Е 1 направлено в противоположную сторону, значит знак минус. Теперь смотрим на напряжения, ток I 1 совпадает по направлению со стрелкой, а токи I 2 и I 3 направлены противоположно. Следовательно:

-E 1 +E 2 +E 3 =I 1 R 1 -I 2 R 2 -I 3 R 3

На основании законов Кирхгофа составлены методы анализа цепей переменного синусоидального тока . Метод контурных токов – метод основанный на применении второго закона Кирхгофа и метод узловых потенциалов основанный на применении первого закона Кирхгофа.